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Abstract: Multi-parameter data visualization methods are a modern tool allowing to classify some 

analyzed objects. When it comes to grained materials, e.g. coal, many characteristics have an influence on 

the material quality. Besides the most obvious features like particle size, particle density or ash contents, 

coal has many other qualities which show significant differences between the studied types of material. 

The paper presents the possibility of applying visualization techniques for coal type identification and 

determination of significant differences between various types of coal. The Principal Component Analysis 

was applied to achieve this purpose. Three types of coal 31, 34.2 and 35 (according to Polish 

classification of coal types) were investigated, which were initially screened on sieves and subsequently 

divided into density fractions. Next, each size-density fraction was analyzed chemically to obtain other 

characteristics. It was pointed out that the applied methodology allowed to identify certain coal types 

efficiently, which makes it useful as a qualitative criterion for grained materials. However, it was 

impossible to provide such identification based on contrastive comparisons of all three types of coal. The 

presented methodology is a new way of analyzing data concerning widely understood mineral processing.   

Keywords: Principal Component Analysis, PCA, multi-parameter data visualization, coal, identification 

of data, covariance matrix, pattern recognition 

Introduction 

In mineral processing operations particle properties influence processing results 

(Drzymala, 2009; Kelly and Spottiswood, 1989). In the case of coal the most 

important parameters are size and density. But it is often not enough to classify coal 

type properly. In modern statistical research there is often a need of applying multi-

parameter (called also as multidimensional) statistical methods. A simple regressive 

analysis is not enough in more complex cases (Brozek and Surowiak, 2005; 2007, 

2010). That is why many new techniques are introduced in scientific works. Of course, 
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there are many methods connected with regressive equations (Gawenda et al., 2005; 

Lyman, 1993; Niedoba, 2009; 2011; 2013a; 2013b;  Niedoba and Surowiak, 2012; 

Saramak, 2011; 2013; Snopkowski and Napieraj, 2012; Tumidajski, 1997; Tumidajski 

and Saramak, 2009) or even fractals (Ahmed and Drzymala, 2005) but many methods 

of data-mining are also in use. A special type of statistical analysis involves multi-

parameter data visualization methods geared towards recognizing differences and 

similarities between analyzed sets of data. Finding these differences is often a very 

important issue in mineral processing, where processes depend on many material 

features.  

The qualitative analysis of multi-parameter data (properties of material) obtained 

from the results of empirical experiments can be carried out by applying the multi-

parameter visualization method. The results of analyses can be helpful thanks to the 

characteristics of materials as well as the development of mineral processing models 

based on this data. Attempts to depict multi-parameter data have been undertaken on 

many occasions. Among many methods, the following ones can be selected: grand-

tour method (Asimov, 1985, Cook et al., 1995), use of neural networks for data 

visualization (Aldrich, 1998; Jain and Mao, 1992; Kraaijveld et al., 1995), parallel 

coordinates method (Chatterjee et al., 1993; Chou et al., 1999; Gennings et al., 1999; 

Inselberg, 1985), star graph method (Sobol and Klein, 1989), multidimensional scaling 

(Kim et al., 2000), scatter-plot matrices method (Cleveland, 1984), relevance maps 

method (Assa et al., 1999). Visualization of multidimensional solids is also possible 

(Jamroz, 2001; 2009). The observational tunnels method (Jamroz, 2001; 2014) makes 

it possible to obtain an external view of the observed multi-parameter sets of points 

using tunnel radius introduced by the present author (Jamroz and Niedoba, 2014; 

Niedoba and Jamroz, 2013). 

The use of methods of multi-parameter data visualization by transformation of 

multidimensional space into two-dimensional space makes it possible to show multi-

parameter data on computer screen. This allows to conduct a qualitative data analysis 

in the most natural way for human with a sense of sight. One of such methods is the 

Principal Component Analysis (PCA). It was used in the work to present and analyze 

a set of seven-parameter data describing samples of three various coal types 31, 34.2 

and 35 (according to Polish classification of coals). It was decided to check whether 

this method allows to state that an amount of information contained in seven coal 

features is sufficient for the proper classification of coal types. The application of 

various methods for analyzing possibilities of recognition of various coal properties is 

becoming an increasingly interesting issue. Earlier, other visualization methods were 

applied, including the observational tunnels method (Jamroz and Niedoba, 2013; 

2014). An application of the PCA method for this purpose is a new way of 

approaching the subject.    
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Material characteristics 

Three types of coal, types 31 (energetic coal), 34.2 (semi-coking coal) and 35 (coking 

coal) in the Polish classification were used in the investigation (Olejnik et al., 2010). 

The classification of coal types can be found in (Drzymala, 2009). The coals 

originated from three various Polish mines and all of them were initially screened on a 

set of sieves of the following sizes: –1.00, –3.15, –6.30, –8.00, –10.00, –12,50,  

–14.00, –16.00 and –20.00 mm. Subsequently, the size fractions were additionally 

separated into density fractions by separation in dense media using zinc chloride 

aqueous solution of various densities (1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 g/cm
3
). The 

fractions were used as a framework for further consideration and additional coal 

features were determined by means of chemical analysis. For each density-size 

fraction the following parameters were determined: combustion heat, ash contents, 

sulfur contents, volatile parts contents and analytical moisture, making up, together 

with the mass of these fractions, seven various features for each coal. The examples of 

such data were presented in Table 1 containing the data for size fractions of 14.00-

12.50 mm for each type of coal. The complete data can be found in Niedoba (2013a).  

Principal Component Analysis 

Method description 

The PCA method is one of statistical methods of factor analysis. It consists of 

perpendicular projection of multi-parameter data on the plane represented by properly 

selected eigenvectors V1 and V2, which are related to the highest eigenvalues of 

covariance matrix of observational set. The selection of vectors V1 and V2 allows to 

obtain an image on plane representing the greatest number of data changes whose 

mutual distance is the biggest (Li et al., 2000).  

Algorithm 

A set of input data consists of parts described by n of features. It can be then treated as 

a set of n-dimensional vectors. Let us mark the vector of input data as xk=(xk,1, xk,2, … 

xk,n). The algorithm performing visualization by means of PCA consists of several 

steps: 

 scaling of initial data. Individual features represented by individual data 

dimensions are scaled in the way ensuring their compliance with the same selected 

range. In this paper, the individual coordinates (features) of data set vectors were 

scaled to the range (0, 1), 
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Table 1. Data for size fractions of 14.00-12.50 mm for all three types of coal 

Coal type 31 

Density 

[Mg/m3] 

Mass 

[g] 

Combustion heat 

[kJ] 

Ash 

contents 

[%] 

Sulfur 

contents [%] 

Volatile parts 

contents 

Va 

Analytical 

moisture Wa 

<1.3 308.6 29.51 6.41 0.72 34.32 3.23 

1.3–1.4 292.5 24.53 19.61 0.7 29.22 3.36 

1.4–1.5 36.1 12.34 16.55 0.76 28.92 3.87 

1.5–1.6 10.7 21.42 26.10 1.55 31.08 3.40 

1.6–1.7 25.6 18.70 35.78 2.28 26.71 2.40 

1.7–1.8 139 16.41 37.20 1.23 29.24 2.19 

1.8–1.9 12.7 12.89 48.20 1.13 24.05 2.23 

>1.9 601.2 1.91 86.53 0.40 9.30 0.91 

Coal type 34.2 

Density 

[Mg/m3] 

Mass 

[g] 

Combustion heat 

[kJ] 

Ash 

contents 

[%] 

Sulfur 

contents [%] 

Volatile parts 

contents 

Va 

Analytical 

moisture Wa 

<1.3 360.5 34.44 2 0.32 28.96 1.04 

1.3–1.4 57 32.02 7.67 0.71 24.16 1.87 

1.4–1.5 25.5 28.89 15.33 0.83 24.58 1.34 

1.5–1.6 12.2 24.27 33.73 0.17 27.85 0.95 

1.6–1.7 3.2 20.22 34.3 0.34 no data no data 

1.7–1.8 15 17.38 36.15 0.34 27.93 0.37 

1.8–1.9 3.6 18.48 27 0.05 31.75 1.01 

>1.9 68.9 2.90 79.33 0.91 12.08 0.52 

Coal type 35 

Density 

[Mg/m3] 

Mass 

[g] 

Combustion heat 

[kJ] 

Ash 

contents 

[%] 

Sulfur 

contents [%] 

Volatile parts 

contents 

Va 

Analytical 

moisture Wa 

<1.3 268.7 34.86 2.38 0.28 20.28 1.45 

1.3–1.4 89.3 31.86 8.97 0.36 20.10 1.21 

1.4–1.5 39.8 27.49 19.61 0.56 18.83 1.28 

1.5–1.6 22.0 21.06 35.68 0.39 16.22 1.32 

1.6–1.7 25.7 20.88 34.62 1.26 19.42 1.47 

1.7–1.8 29.0 19.21 40.60 0.38 18.86 1.61 

1.8–1.9 28.1 13.76 52.24 1.14 17.95 1.51 

>1.9 589.5 2.94 80.57 0.20 10.84 1.37 
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 calculation of covariance matrix. The general formula for covariance was used:  

        YEXEYXEYX ,cov  (1) 

where E is the expected value. First, the expected values are calculated: 
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where, Ei – expected value of i
th
 coordinate of input data, Ei,j – expected value of 

product of i
th
 and j

th
 coordinate of input data, m – number of vectors of input data,  xk,i 

– i
th
 coordinate of k

th
 vector of input data. If the covariance matrix is marked as A, then 

each element of the matrix aij is calculated as: 

 jijiij EEEa  , . (4) 

In this way, the symmetrical covariance matrix of input data set is obtained, 

 calculation of eigenvalues and eigenvectors of covariance matrix. For numerical 

calculations the Jacobi method was selected. It draws upon the fact that orthogonal 

transformation does not change own values and vectors of matrix. Consequently, it 

is possible to perform a set of orthogonal transformations on matrix A to conduct it 

to diagonal form D: 

 
TWDWA  . (5) 

In the diagonal matrix the eigenvalues are located on the main diagonal while the 

related eigenvectors are located in columns of matrix W. Matrices D and W which 

fulfill Eq. 5 by means of the Jacobi method can be achieved in the following steps:  

1. as matrix W the identity matrix of dimension nxn is accepted, 

2. as matrix A covariance matrix of dimension nxn is accepted, calculated according 

to equation (4), 

3. the main element is selected apart from the main diagonal of matrix A, which is the 

element of the highest module value not located on the main diagonal. The location 

of this element in the matrix is searched, so coordinates p and q must be found 

fulfilling the condition: 
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 ijpq aaisjinji  :and,...,1, , (6) 

4. the values c and s are calculated using the following formulas: 
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where: aij is an element of the matrix from i
th
 line and j

th
 column,  sgn(r) = 1 for r>=0 

and sgn(r) = –1 for r < 0. Next, the calculations are performed according to formulas 

(9) and (10):  
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t
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and 

 tcs   (10) 

1. having applied calculated values c and s, matrix B is created ensuring identity 

matrix of dimension nxn in which four elements are changed: bpp = c, bqq = c, bpq = 

s and bqp = -s, 

2. the new value of matrix A is assigned by application of previous value of matrix A, 

matrix B created in the previous step and transposition matrix B: 

 BABA T : , (11) 

3. the new value of matrix W is assigned by application of previous value of matrix W 

and matrix B created in step 5.  

 BWW : ,  (12) 

4. it is checked whether the matrix A, obtained as a result of transformations, is a 

diagonal matrix according to previously accepted preciseness of calculations  , so: 

 
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ii
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. (13) 

For experiments described in section 3, 0.000001  was accepted. If inequality 

(13) is not fulfilled, a return to step 3 is required and calculations are continued. In 



Multi-parameter data visualization by means of principal component analysis…  581 

other case, the obtained matrix A is diagonal. The situation described by Eq. 5 is 

achieved in this way. That means that the eigenvalues of output matrix are located on 

the main diagonal of obtained matrix A and the eigenvectors related to these values 

occur in columns of obtained matrix W,   

 the determination of two coordinate axes. Two eigenvectors related to two biggest  

module eigenvalues of covariance matrix are selected from vectors calculated in 

stage C. Let us mark them as V1 = (v1,1, v1,2, … v1,n), V2 = (v2,1, v2,2, … v2,n). In this 

way two coordinates axes are obtained on which all data will be projected, 

 drawing the set of points on screen. For each point xk two coordinates are 

calculated )~,~( 2,1, kk xx  preceded by their projection on axes V1 and V2, which 

means: 

 



n

i

ikik xvx
1

,,11,
~  (14) 

 



n

i

ikik xvx
1

,,22,
~ . (15) 

As a result, the image of each vector can be presented on computer screen. It is 

achieved by drawing on the screen a symbol, in place of coordinates )~,~( 2,1, kk xx , 

representing fraction to which the related data vector xk belongs. In this way the image 

of multidimensional points representing various coal types is created on the computer 

screen. 

Results of experiment 

As part of the investigation, for the purpose of visualizing seven-parameter data 

describing various coal types, a computer program was created based on assumptions 

presented in the previous chapter. The obtained results were presented in Figs 1-4. The 

views show a transformation of seven-parameter data by means of PCA into two 

dimensions. The visualization algorithm in  PCA, despite reduction to only two 

dimensions, has been organized to  ensure the view representing the biggest number of 

data changes whose mutual distance is the biggest. In this way it is possible to see 

significant features of seven-parameter data on the computer screen. 
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Fig. 1. View of seven-parameter data representing three various types of coal.  

Images of points representing coal, type 31 were marked with (■), 

 (+) – samples of coal type 34.2, (o) – samples of coal type 35. 

Figure 1 presents obtained view of points representing seven-parameter data 

vectors that describe three various coal types: 31, 34.2 and 35. In order to obtain it, the 

system calculated the covariance matrix: 
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cov . 

Furthermore, eigenvectors were calculated: 

  V1 = (0.5401, -0.0589, -0.5340, 0.5307, 0.0763, -0.3425, -0.1225), 

  V2 = (0.1289, 0.0025, -0.1631, 0.0202, 0.6594, 0.4273, 0.5822). 
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In the above Figure, it is clearly visible that images of data points representing coal 

samples of a certain type gather in separated subareas and create clusters. It can be 

noticed that almost on  the whole area of the Figure these clusters can be separated. In 

some parts of the space, however, the images of points representing various coal types 

overlap. Therefore, according to Figure 1, it is impossible to state that the analyzed 

data allow to classify coal types properly. 

 

Fig. 2. View of seven-parameter data representing two various types of coal. Images of points 

representing coal type 31 were marked with (■), (o) – samples of coal type 35. 

With a view to achieving clearer results, it was decided to present this data by 

means of the PCA method in some other way. A decision was made to analyze the 

data representing various types of coal in pairs. Figure 2 shows the view obtained for 

data representing coal types 31 and 35. In order to obtain this view, the system 

calculated the covariance matrix:  
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








0.0498  0.0453  0.0152  0.0251-  0.0149  0.0056  0.0261-

 0.0453  0.0564  0.0159  0.0445-  0.0351  0.0068  0.0466-

 0.0152  0.0159  0.0508  0.0095  0.0144-  0.0077-  0.0214

 0.0251-  0.0445-  0.0095  0.0746  0.0719-  0.0056-  0.0842

 0.0149  0.0351  0.0144-  0.0719-  0.0731  0.0053  0.0827-

 0.0056  0.0068  0.0077-  0.0056-  0.0053  0.0305  0.0115-

 0.0261-  0.0466-  0.0214  0.0842  0.0827-  0.0115-  0.1071

cov . 

Furthermore, eigenvectors were calculated: 

 V1 = (0.5936, -0.0637, -0.4798, 0.5031, 0.0701, -0.3325, -0.2116), 

 V2 = (0.1948, -0.0316, -0.1952, 0.0507, 0.6128, 0.4902, 0.5519). 

In Figure 2 it is clearly visible that images of points representing samples of coal 

type 31 gather in clusters, which can be easily separated from clusters of points 

representing coal type 35. In Figure 3 the view obtained for data representing coal 

types 34.2 and 35 is presented. Also, in this case it is clearly visible that images of 

points representing samples of coal type 34.2 gather in clusters, which can be easily 

separated from clusters of points representing samples of coal type 35. The covariance 

matrix obtained from the creation of this Figure is as follows: 
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







0.0374  0.0143-  0.0015  0.0005-  0.0028  0.0007  0.0021-

 0.0143-  0.0650 0 0.001-  0.0542-  0.0523  0.0007-  0.0440-

 0.0015  0.0010-  0.0278  0.0055  0.0059-  0.0083-  0.0111

 0.0005-  0.0542-  0.0055  0.0868  0.0886-  0.0046-  0.0811

 0.0028  0.0523  0.0059-  0.0886-  0.0922  0.0059  0.0851-

 0.0007  0.0007-  0.0083-  0.0046-  0.0059  0.0222  0.0101-

 0.0021-  0.0440-  0.0111  0.0811  0.0851-  0.0101-  0.0840

cov . 

Its eigenvectors are as following: 

 V1 = (-0.5174, 0.0414, 0.5554, -0.5404, -0.0480, 0.3575, -0.0090), 

 V2 = (-0.2219, 0.1868, 0.1310, -0.0412, -0.1434, -0.6099, 0.7102). 

Furthermore, Fig. 4 shows the view obtained for data representing coal types 31 

and 34.2. It can be easily noticed that images of points representing samples of coal 

type 31 gather in clusters which can be easily separated from clusters of points 

representing samples of coal type 34.2. In this case the covariance matrix is as 

follows:  
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
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0.0543  0.0254  0.0161  0.0227-  0.0149  0.0103  0.0246-

 0.0254  0.0513  0.0020-  0.0551-  0.0518  0.0080  0.0494-

 0.0161  0.0020-  0.0536  0.0149  0.0178-  0.0037-  0.0208

 0.0227-  0.0551-  0.0149  0.0778  0.0770-  0.0081-  0.0745

 0.0149  0.0518  0.0178-  0.0770-  0.0805  0.0080  0.0763-

 0.0103  0.0080  0.0037-  0.0081-  0.0080  0.0256  0.0121-

 0.0246-  0.0494-  0.0208  0.0745  0.0763-  0.0121-  0.0840

cov . 

The eigenvectors are: 

  V1 = (-0.5243, 0.0776, 0.5169, -0.5167, -0.1134, 0.3743, 0.1788), 

  V2 = (0.0762, 0.0760, -0.1317, 0.0184, 0.7040, 0.1959, 0.6608). 

 

Fig. 3. View of seven-parameter data representing three various types of coal. Images of points 

representing coal type 34.2 were marked with (+), (o) – samples of coal type 35. 

If we can state that the distinction of coal type 31 samples from coal type 35 

samples is possible (Fig. 2) and we can state that the distinction of coal type 34.2 
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samples from coal type 35 samples is possible (Fig. 3), as well the distinction of coal 

type 31 samples from coal type 34.2 samples is possible (Fig. 4), then the possibility 

of distinction of samples of each of the three coal types is confirmed. Thanks to the 

visualization of multi-parameter data by means of PCA, it is possible to state that 

information covered in seven-parameter data describing samples of three types of coal 

is sufficient for its proper classification.   

It is worth paying attention to the fact that the algorithm of visualization by means 

of PCA does not use the information of affiliation of points representing data to 

certain fractions. In this situation grouping of points representing certain fraction 

depends only on some properties of  data noticed by the algorithm.  

 

Fig. 4. View of seven-parameter data representing two various types of coal. Images of points 

representing coal type 31 were marked with (■), (+) – samples of coal type 34.2 

Conclusions  

The conducted experiments based on visualization of seven-parameter data by means 

of PCA allowed to arrive at the following conclusions. 
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1. Multi-parameter visualization by means of the PCA allows to state that information 

covered in analyzed seven-dimensional data is sufficient for a proper classification 

of coal types 31, 34.2 and 35.  

2. The visualization of data concerning three types of coal within one figure allowed 

to state that images of data points representing coal samples of certain type gather 

in clusters which can be separated almost on the whole area of the figure. However, 

in some areas of the space, the images of points representing various coal types 

overlap. Therefore, based on such view it was impossible to state whether the 

analyzed data allows for a proper classification of coal types. 

3. Only presentation of data representing three various types of coal in pairs allowed 

to obtain clear results. They allowed to conclude that images of points representing 

samples of coal of certain type gather in clusters which can be separated. It means 

that data contains a sufficient amount of information to classify coal types 

properly. 

4. The advantage of the PCA method is the fact that during visualization it is not 

necessary to select any parameters  in contrast to many other methods of multi-

parameter data visualization. 
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